Measurement of the Internal Conversion Coefficient of ^{119m}Sn

Molly Maguire, REU student from Reed College N. Nica J.C. Hardy

Internal Conversion

Internal Conversion is a form of radioactive decay resulting in the emission of an orbital electron.

Internal Conversion Coefficient

- The ICC, α , of a nuclide is defined as the ratio between the Internal Conversions and the γ -rays.
- We are interested only in the conversions occurring in K shell electrons; the corresponding coefficient is $\alpha_{_{\rm K}}$.
- Because it is difficult to measure the electrons given off from Internal Conversion, we used the number of K x-rays given off to calculate α_{κ} .

 $\alpha_{K} = \frac{Number of K shell conversions}{Number of \gamma emissions}$

Motivation

There are two methods of calculating the ICC

Motivation

- The previous method of calculation has been used for years, and these values are listed in many tables.
- To demonstrate which method is correct, the J.C. Hardy research group at Texas A&M has made precision measurements of several ICCs.
- This experiment is possible with this isotope because the theories give two values for α_{K} which are far enough apart to be measurable.

About ^{119m}Sn

We chose ^{119m}Sn because it has a lower atomic number than previously studied isotopes, but is not so light as to make measurement impossible.

for $\alpha_{\rm K}$ of ^{119m}Sn are 1544 (no-hole) and 1618 (Frozen-Orbital).

Preparation

- We began with a foil enriched to 98.8% ¹¹⁸Sn (natural abundance: 24%)
- This was irradiated with neutrons to produce ^{119m}Sn
- Not 100% pure \rightarrow contaminants

- Initial Spectra had a lot of ¹⁸²Ta

• It was allowed to decay for a year to allow for easier measurement

Initial Spectrum vs. After Decay Period

Goal

- Measure the area of the ^{119m}Sn γ-ray peak at 65.7 keV
- Measure the areas of the K x-rays of ^{119m}Sn. These occur around 25 keV and 28 keV
- Use known detector efficiencies and the fluorescence yield, ω_{κ} , to calculate α_{κ} :

$$\alpha_{K} \cdot \omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

Peak Fitting: γ-ray

10

Peak Fitting: x-ray

 $-Energy \rightarrow$

Contaminants

The main contaminants identified in our sample:

- ⁶⁰Co
- ${}^{65}Zn$
- ⁷⁵Se
- ¹¹³Sn
- ¹²⁵Sb
- ¹⁸²Ta
- Main subtractions needed: ¹²⁵Sb peak at 24 keV, ¹²⁵Sb and ¹¹³Sn at 27, ¹⁸²Ta at 65, and ⁷⁵Se at 66 keV. LBNL Nuclear Data

Subtraction

Subtraction

- We used known peak-intensities to subtract the areas of contamination peaks.
- ⁷⁵Se gives off several γ-rays, one of them overlapping with an area of interest. The intensity of this peak (at 66 keV) is 1.112.
- Another peak occurs at 264 keV with intensity 58.9.

$$\frac{A_1}{A_2} = \frac{I_1}{I_2} \qquad \qquad \frac{I_1}{I_2} = \frac{N_1}{N_2} \cdot \frac{\varepsilon_2}{\varepsilon_1}$$

Calculation

- Dr. Nica and I each did our own calculations of α_{K} , using our own fits of the spectra.
 - My calculation: $\alpha_{K} = 1668$

– Ninel's calculation: $\alpha_{\rm K} = 1647$

- So our current measurement is: $\alpha_{K} = 1658 \pm 45$
- These agree with the "Frozen Orbital" method of calculation of $\alpha_{_{\rm K}}$ =1618, which is physically more accurate.

Further Work

- This is a preliminary measurement for two reasons:
 - Work is still needed to account for the effects of photon scattering in the air and off of experimental apparatus.
 - Because of high background, there are discrepancies about how to calculate the uncertainty in our measurement.
- However, this measurement is precise enough to indicate which theoretical description is more accurate.

Acknowledgements

- Thanks to Dr. John Hardy, Dr. Ninel Nica, Dr. Victor Iacob, and Dr. Hyo-In Park.
- The Lund/LBNL Nuclear Data
- The National Nuclear Data Center
- Radware